Adequate Subgroups and Indecomposable Modules

نویسندگان

  • ROBERT GURALNICK
  • FLORIAN HERZIG
چکیده

The notion of adequate subgroups was introduced by Jack Thorne [59]. It is a weakening of the notion of big subgroups used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois representations. Using this idea, Thorne was able to strengthen many automorphy lifting theorems. It was shown in [22] and [23] that if the dimension is smaller than the characteristic then almost all absolutely irreducible representations are adequate. We extend the results by considering all absolutely irreducible modules in characteristic p of dimension p. This relies on a modified definition of adequacy, provided by Thorne in [60], which allows p to divide the dimension of the module. We prove adequacy for almost all irreducible representations of SL2(p ) in the natural characteristic and for finite groups of Lie type as long as the field of definition is sufficiently large. We also essentially classify indecomposable modules in characteristic p of dimension less than 2p − 2 and answer a question of Serre concerning complete reducibility of subgroups in classical groups of low dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Tensor Products of Modules for Dihedral 2-Groups

The only groups for which all indecomposable modules are ‘knowable’ are those with cyclic, dihedral, semidihedral, and quaternion Sylow p-subgroups. The structure of the Green ring for groups with cyclic and V4 Sylow p-subgroups are known, but no others have been determined. Of the remaining groups, the dihedral 2-groups have the simplest module category but yet the tensor products of any two i...

متن کامل

On Induced Projective Indecomposable Modules

A well-known theorem of Fong states that over large enough fields of any characteristic, the principal indecomposable modules of a soluble finite group are induced from subgroups of order prime to the characteristic. It is shown that this property in fact characterises soluble finite groups.

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Loewy Series of Certain Indecomposable Modules for Frobenius Subgroups

We imitate some approaches in infinite dimensional representation theory of complex semisimple Lie algebras by using the truncated category method in the categories of modules for certain Frobenius subgroups of a semisimple algebraic group over an algebraically closed field of characteristic p > 0. By studying the translation functors from p-singular weights to p-regular weights, we obtain some...

متن کامل

2 00 4 GALOIS EMBEDDING PROBLEMS WITH CYCLIC QUOTIENT OF ORDER p JÁN

Let K/F be a cyclic field extension of odd prime degree. We consider Galois embedding problems involving Galois groups with common quotient Gal(K/F ) such that corresponding normal subgroups are indecomposable Fp[Gal(K/F )]-modules. For these embedding problems we prove conditions on solvability, formulas for explicit construction, and results on automatic realizability.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014